

Investigating the Effect of Habitat Availability and Stream Morphology on the Benthic Macroinvertebrate Demographics in Red Bud/Catalpa Creek

Bradley M. Richardson John J. Ramirez-Avila, James L. Martin, Sandra L. Ortega-Achury

Acknowledgements

- Research Team
 - James Grafe
 - Iveth Navarro Torres
 - Lorena Chavarro Chaux
 - Jennifer Deignan
 - Claire Ray
 - Taylor Noble-Cagle
 - Shanika Musser

• US EPA

MISSISS

- MSU Civil and Environmental Engineering Department
- MSU Department of Wildlife, Fisheries, and Aquaculture

FOREST RESOURCES

US Streams and Macroinvertebrates

- ~90% of perennial streams are classified as "wadeable" = 1st - 5th order (EPA 2016)
- Crucial for nutrient cycling (Wallace & Webster 1996)
- Macroinvertebrates can serve as great indicators of stream health (Haweks & De Pauw 1994)
- Important food source (Huryn & Wallace 2000)

reddit.com

Study Site - CTR ("reference")

- Upper reaches armored for drainage
- Mid-reaches with canopy cover and wide, shallow streambed
- Broken Canopy cover in lower reaches

Study Site - CT (impacted)

- Runs through MSU campus
- Surrounded by mowed grass, roads, and parking lots
- Lower reaches incised and armored
- Flashy floods and vet school drain overflow

Objectives and Hypotheses

Objective:

 Compare macroinvertebrate community structures and dynamics between a "reference" stream and a more impacted stream to assess the need for restoration efforts

Hypothesis:

 The impacted stream would how lower values for indices of community health compared to the reference stream

Methods

- Visual Inspection of Stream Characteristics
 - Substrate matrix
 - Sand
 - Gravel
 - Boulder
 - Hard bottom
 Proportion
 - Habitat Availability
 - Leaf packs
 - Root wads
 - **Presence/Absence**

Methods

Macroinverebrate Collection

- Fall 2018 (late Aug Early Sept)
- D-Net Sampling
 - 20 "jabs" per site
 - Based on habitat availability
- Stored and labeled by site
 - Preserved in 10%
 formalin

Methods

- Sample Processing
 - 2 sieved fractions "coarse" (600 µm)* and "fine" (250 µm)
 - Removed all macroinvertebrates

 Identified and enumerated to lowest reasonable taxonomic resolution (Merritt and Cummins 1995)

Analyses

- Community indices between reaches (CT vs. CTR)
 - Richness (S)
 - Shannon Diversity (H)
 - Shannon Evenness (E_H)
- Community Ordination
 - Canonical Correlation Analysis (CCA)
 - Taxa abundances, based on habitat variables
 - Only included taxa that:
 - Possessed >10 individuals
 - Collected from >1 site

		СТ	CTR
Substrate	Sand	26%	67%
	Gravel	41%	31%
	Boulder	13%	0%
	Hard bottom	20%	1%
Habitat	Root wad Present	4/6	6/7
	Leaf pack Present	4/6	7/7

Most individuals belong to 3 taxa (~70%)

Distribution of abundances appear to be more even across CTR

MISSISSIPPI STATE

 No significant difference in mean individuals between sites

 $CT = 138.1 \pm 97.4$ (mean \pm sd)

 $CTR = 131.5 \pm 71.0$

MISS

	СТ	CTR
Total Individuals (N)	839	660
Richness (S)	21	30
Shannon Diversity (H)	1.88	2.51
Shannon Evenness (E _D)	0.62	0.74

*34 taxon groups analyzed

Hard bottom provided no constraint – explained no appreciable variation

Sites are grouping based on different characteristics

ssippi State

ersity College of

Reaches are grouping based on differences

Con. inertia = 0.26Total inertia = 0.52"Fit" = 0.5

Approx. 37% of variation explained in 2 axes

Many groups are showing up in expected places, based on behavior and life histories

Others are not: Riffle Beetles

Presence of leaf packs indicate better habitat quality overall??

Conclusions/Discussion

- The macroinvertebrate community of CT has lower richness, diversity, and evenness than the less-impacted CTR reach
- Dominate taxa in both reaches are pouch snails and chironomids
- Reaches are displaying very different characteristics
 - Similarity analyses in the works
- CT shows lower prevalence of habitats (root wads and leaf packs) which
 may suggest one method of remediation to increase diversity in this reach

Next Steps

- Still working through "fine" fractions and new samples
- Adding additional stream characteristics for CCA
 - 37% of variation explained from 6 basal characteristics
- Re-analyzing with taxa presence/absence and using functional groups
- Continued monitoring before, during, and after stream restoration efforts

Questions?

Bradley M. Richardson

bmr380@msstate.edu

bradley-richardson.com

